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Abstract

The transfer problem is defined by the possibility for a donor country to
end up better off after having given away some resources to another country.
The simplest version of that problem can be formulated in a two consumer
exchange economy with fixed total resources. Existence of a transfer problem
at some equilibrium is known to be equivalent to instability in the case of two
goods. This characterization is extended to an arbitrary number of goods by
showing that a transfer problem exists at a (regular) equilibrium if and only if
this equilibrium has an index value equal to −1. Samuelson’s conjecture that
there is no transfer problem at tatonnement stable equilibria is therefore true
for any number of goods.
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1. Introduction

Does a country’s utility necessarily decrease when that country gives away some
resources to another country? This problem is known in trade theory as the transfer
problem and has led to a substantial literature. One aspect of the transfer problem
is the characterization under simple assumptions (no trade impediments such as
transportation costs and tariffs in particular) of those equilibria at which the donor
country can improve its utility when giving away resources. The simplest model
in which the transfer problem can be studied in the case of an arbitrary number
of goods is the exchange model with two consumers and fixed total resources.
See for example [13]. This question takes two very different forms depending on
whether one considers the same equilibrium selection map or two different ones.
The second case is equivalent to the existence of multiple equilibria. The transfer
problem then has a very simple solution that is independent of the number of goods
[2].
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The transfer problem for the same equilibrium selection map is much more
interesting. Its study is also more difficult. A necessary condition is that the
equilibrium is regular. The following results are then known: there are examples
of economies that have regular equilibria with a transfer problem, i.e., such that a
consumer (country) can be better off by giving away some resources [10]; there is
no transfer problem at tatonnement stable equilibria ([12], footnote p.29 and [13]);
tatonnement stability is not only sufficient but also necessary to prevent a transfer
problem in the case of two goods [2]. Using the theory of smooth economies, I
show in this paper that, at a regular equilibrium and for the equilibrium selection
map defined by that equilibrium, there is a transfer problem if and only if the
index value of that equilibrium is equal to −1. Utility level of the donor country
then increases for any gifts that remain small enough to stay in the domain of the
equilibrium selection map. This property extends to an arbitrary number of goods
the characterization given in [2] for the case of two goods.

The geometric or dual formulation of the equilibrium equation in the price-
income space plays a crucial role in this paper. Details can be found in [4], Chapter
5. Nevertheless, in order to make the paper as much self-contained as possible,
I give a fresh and rather simple presentation of that approach, something made
possible by the number of consumers that is limited to two. I also recall in this
paper several concepts and definitions of the theory of smooth economies. If
no prior knowledge of that theory is required, interested readers are encouraged to
consult suitable references as, for example, [5, 7, 8, 11]. On the mathematical side,
the part on the orientation of smooth manifolds, the orientation and intersection
numbers (for two smooth submanifolds of complementary dimensions) in Chapter
3, pages 94–107, of [9] nicely complements the developments of this paper but is
not strictly necessary. A broad understanding of the implicit function and inverse
function theorems is all that is required on the mathematical side.

Section 2 of this paper is devoted to the main assumptions, definitions and
notation. The geometric or dual formulation of the exchange model in the price-
income space (limited to the case of two consumers, fixed total resources and
an arbitrary number of goods) occupies Section 3. This formulation is then used
in Section 4 for a complete characterization by their index value of the regular
equilibria featuring a transfer problem. Concluding comments end this paper with
Section 5.

2. Definitions, assumptions and notation

2.1. Goods and prices

There are ` ≥ 2 goods. The commodity space is R` and X = R`++ denotes the
strictly positive orthant of that space. The price vector p = (p1, . . . , p`) ∈ X (all
prices are strictly positive) is normalized by the numeraire assumption p` = 1. Let
p̄ = (p1, . . . , p`−1) ∈ R`−1++ denote the first ` − 1 coordinates of the normalized
price vector p ∈ S. It comes p = (p̄, 1). The set of numeraire normalized prices is
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denoted by S = R`−1++ × {1}.

2.2. Consumers

There are two consumers (or countries) and a finite number ` of goods. Consumer
i , with 1 ≤ i ≤ 2, is endowed with the goods bundle ωi ∈ R`++. The endowment
vector ω = (ω1, ω2) ∈ R`++ × R`++ defines an economy. Total resources, equal to
the vector r = ω1 + ω2, are fixed. Let Ω = {ω = (ω1, ω2) ∈ X2 | ω1 + ω2 = r}
denote the endowment or parameter space.

Consumer i preferences are represented by a utility function ui : X → R that
satisfies the following assumptions that are standard in this kind of literature:
1) Smoothness; 2) Smooth monotonicity, i.e., Dui(xi) ∈ X for xi ∈ X where
Dui(xi) is the gradient vector defined by the first-order derivatives of ui ; 3) Smooth
strict quasi-concavity, namely, the restriction of the quadratic form defined by
the Hessian matrix D2ui(xi) to the tangent hyperplane to the indifference surface
{yi ∈ X | ui(yi) = ui(xi)} through xi is negative definite; 4) The indifference
surface {yi ∈ X | ui(yi) = ui(xi)} is closed in R` for all xi ∈ X. The utility function
ui is extended to xi = 0 by setting ui(0) = infxi∈X ui(xi).

Consumer i ’s demand function is the map fi : S × R++ → X where fi(p, wi) is
the unique solution to the problem of maximizing the utility ui(xi) subject to the
budget constraint p · xi ≤ wi . The demand function fi is smooth, satisfies Walras
law (namely the identity p · fi(p, wi) = wi). Its (numeraire normalized) Slutsky
matrix is negative definite. (For details, see for example [5], Chapter 2.)

Consumer i ’s indirect utility function is defined by ûi(p, wi) = ui
Ä
fi(p, wi)

ä
.

2.3. Equilibrium

The excess demand associated with the pair (p, ω) ∈ S×Ω is the vector z(p, ω) ∈
R` that is equal to z(p, ω) = f1(p, p ·ω1)+ f2(p, p ·ω2)−r . The pair (p, ω) ∈ S×Ω

is an equilibrium if
z(p, ω) = 0, (1)

equality known as the equilibrium equation, is satisfied. The equilibrium manifold
is the subset E of S ×Ω defined by equation (1).

Let z̄(p, ω) ∈ R`−1 denote the vector defined by the first `−1 coordinates of the
vector z(p, ω) ∈ R` for (p, ω) ∈ S×Ω. It follows from the identity p · z(p, ω) = 0

(a consequence of Walras law satisfied by individual demand functions) that the
equilibrium equation (1) is equivalent to the equation z̄(p, ω) = 0 ∈ R`−1.

2.4. Index of a regular equilibrium

The equilibrium (p, ω) ∈ E is regular if the (` − 1) × (` − 1) Jacobian matrix

J(p, ω) =
Dz̄

Dp̄
(p, ω) is invertible. By definition, the index of the regular equilibrium
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(p, ω) ∈ E is equal to +1 (resp. −1) if the sign of (−1)`−1 det J(p, ω) is > 0

(resp. < 0).

Remark 1. Roughly speaking, local stability for Walras tatonnement can be iden-
tified to the Jacobian matrix J(p, ω) having eigenvalues with strictly negative real
parts. The product of these eigenvalues being equal to det J(p, ω), a stable equi-
librium always has an index value equal to +1. The converse is not true.

2.5. Equilibrium selection maps

Let (p, ω) ∈ E be a regular equilibrium. It is then possible to apply the implicit
function theorem to the equation z̄

Ä
(p̄, 1), ω

ä
= 0 where the unknown is the vector

p̄ ∈ R`−1++ . Then, there exists a neighborhood U of ω and a neighborhood V ⊂ E
of the equilibrium (p, ω) ∈ E and a smooth map s : U → S such that the map
σ : U → V defined by σ(ω′) =

Ä
s(ω′), ω′

ä
is a diffeomorphism between U and V

(i.e., a smooth bijection with a smooth inverse map). For a neighborhood U of ω
that is small enough, the map σ : U → V (resp. s : U → S) depends only on the
regular equilibrium (p, ω) ∈ E. The map σ : U → V (resp. s : U → S) is known
as the local equilibrium selection map (resp. local equilibrium price selection map)
associated with the regular equilibrium (p, ω) ∈ E. For open sets U that are small
enough, the maps σ and s are determined by the (regular) equilibrium (p, ω) ∈ E.
For details, see [5], Proposition 7.2.

2.6. The transfer problem

Let ω = (ω1, ω2) and ω′ = (ω′1, ω
′
2) in Ω be two endowment vectors (or economies.)

By definition, consumer 1 gives away some resources when the economy moves
from ω to ω′ if inequality ω′1 � ω1 (i.e., ω′1 ≤ ω1 and ω′1 6= ω1) is satisfied.

Definition 1. There is a transfer problem at the regular equilibrium (p, ω) if there
exists an endowment vector ω′ = (ω′1, ω

′
2) ∈ U with ω′1 � ω1 such that

u1(f1(s(ω′), s(ω′) · ω′1)) > u1(f1(s(ω), s(ω) · ω1)), (2)

where s : U → S is the local equilibrium price selection map associated with the
regular equilibrium (p, ω) ∈ E.

By definition, the transfer problem requires only the existence of one endowment
vector ω′ with ω′1 � ω1 such that inequality (2) is satisfied.

Remark 2. Definition 1 requires the equilibrium (p, ω) ∈ E to be regular. This
restriction is minor since the set of regular equilibria is an open subset with full
measure of the equilibrium manifold E by [3] or [5], Proposition 8.10.
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3. The geometric approach to the transfer problem

3.1. The price-income space

The price-income space is the set S×R2++ that consists of the triplets (p, w1, w2)

where w1 and w2 are the wealth of consumer 1 and 2 respectively. With total
resources r fixed, the set H(r) is the subset of S × R2++ defined by the linear
equation w1 + w2 = p · r . This is a hyperplane of dimension `. This set is known
as the ambient space. A set of coordinates for the ambient space H(r) is given
by the `-tuple (p1, . . . , p`−1, w1) = (p̄, w1) ∈ R`++. Then, w2 is determined by the
formula w2 = p · r − w1.

3.2. The section manifold

Definition

By definition, the section manifold B(r) is the subset of H(r) consisting of the
points b = (p, w1, w2) that satisfy equation

f1(p, w1) + f2(p, w2) = r. (3)

This set is a smooth submanifold of H(r) of dimension m− 1 by Proposition 5.4.1
of [4]. Therefore, for m = 2, the section manifold is just a smooth curve. Here is
a direct proof of that property.

The contract curve P (r)

In the case of two consumers, the section manifold B(r) is closely related to the
contract curve of the Edgeworth box, i.e., the set of Pareto optima associated
with the fixed total resources r . Let P (r) denote that set. A Pareto optimum
then results from the maximization of the second consumer’s utility u2(x2) subject
to the first consumer’s utility constraint u1(x1) = u1 with u1 ∈ [u1(0), u1(r)], the
total resources being fixed and equal to r ∈ R`++. Let x(u1) = (x1(u1), x2(u1))

be the Pareto optimum that solves that constrained maximization problem and
let p(u1) ∈ S denote the (numeraire normalized) price vector that supports that
Pareto optimum x(u1). For u1(0) < u1 < u1(r), the price vector p(u1) ∈ S is
collinear with the two gradient vectors Du1(x1(u1)) and Du2(x2(u1)); for u1 equal
to u1(0) (resp. u1(r)), the price vector p(u1(0)) ∈ S is collinear with Du2(r) (resp.
p(u1(r)) with Du1(r)). The set of Pareto optima is generated by varying consumer
1’s utility level u1 between u1(0) and u1(r). This defines a smooth curve with two
end points, the allocations (0, r) and (r, 0).

The section manifold B(r)

The section manifold now comes in with the observation that the point M(u1) =

(p(u1), p(u1) · x1(u1), p(u1) · x2(u1)) in the price-income space H(r) belongs to
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B(r) and, conversely, any point of B(r) is associated with a unique utility level
u1 ∈ [u1(0), u1(r)] for the first consumer. The utility u1 therefore parameterizes
not only the contract curve P (r) but also the section manifold B(r). The section
manifold B(r) is therefore a smooth curve with two end points. One end point
is the point M0 = (p(u1(0)), 0, p(u1(0)) · r). The other end point is the point
M1 = (p(u1(r)), p(u1(r)) · r, 0).

By definition, the positive orientation of the curve B(r) corresponds to increas-
ing values of the parameter u1. The curve B(r) is separated by the point M(u1)

into two connected pieces, the arc ˇ�M0M(u1) and the arc ˇ�M(u1)M1. Equilibrium
allocations belonging to the arc ˇ�M0M(u1) (resp. ˇ�M(u1)M1) yield utility levels for
consumer 1 lower (resp. higher) than u1.

The derivative of the map u1 → M(u1) ∈ H(r) is denoted by t(u1). It represents
a vector that is tangent to the curve B(r) at the pointM(u1). The direction defined
by the vector t(u1) corresponds to increasing utility levels for consumer 1 along
the curve B(r) in a neighborhood of the point M(u1).

3.3. The budget hyperplane

The budget hyperplane A(ω) associated with the endowment vector ω ∈ Ω is the
subset of H(r) defined by equation w1 = p · ω1 in the coordinate system (p̄, w1).
In what follows, only the part of the budget hyperplane A(ω) that is defined for
p̄ ∈ R`−1++ (i.e., for strictly positive prices) is considered.

3.4. Equilibrium and the intersection B(r) ∩ A(ω)

One sees readily that (p, ω) ∈ S × Ω is an equilibrium if and only if the point
b = (p, p · ω1, p · ω2) ∈ H(r) belongs to the intersection B(r) ∩ A(ω).

The study of the equilibrium equation (1) is equivalent to the study of the
intersection of the curve B(r) with the budget hyperplane A(ω) when ω is varied
in Ω. This geometric and highly visual approach has another remarkable and quite
useful feature. The curve B(r) captures all the non-linearities of equilibrium equa-
tion (1). In addition, the curve B(r) does not depend at all on the endowment
vector ω ∈ Ω. This feature will come handily in the study of the transfer problem.

3.5. Index of a regular equilibrium: geometric version

Let πj be the vector in R`−1 with coordinates equal to 0 except for the j-th that
is equal to 1. In the coordinate system (p̄, w1) for H(r), let ej(ω) = (πj , ω

j
1).

The (affine) hyperplane A(ω) is parallel to the vector subspace generated by the
` − 1 vectors e1, . . . , e`−1. The base (e1, e2, . . . , e`−1) then defines the positive
orientation of A(ω).

Let b = (p, p ·ω1, p ·ω2) ∈ H(r) be the point in the price-income space that is
associated with the equilibrium (p, ω) ∈ E. Let u1(p, ω) = u1(f1(p, p · ω1)) be the
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Figure 1: A(ω) and B(r)

utility of consumer 1 at the equilibrium allocation x = (f1(p, p · ω1), f2(p, p · ω2)).
It comes b = M(u1(p, ω)).

Regularity of the equilibrium (p, ω) ∈ E is equivalent to the transversality of
the smooth submanifolds B(r) and A(ω) at b. The ` vectors e1(ω), . . . , e`−1(ω)

and t(u1(p, ω)) are then linearly independent in H(r) and the determinant

∆(p, ω) = det(e1(ω), . . . , e`−1(ω), t(u1(p, ω)))

is 6= 0.

Lemma 1. The index number of the regular equilibrium (p, ω) ∈ E is equal to +1

(resp. −1) if ∆(p, ω) is > 0 (resp. < 0).

Proof. It is possible to show directly, but after somewhat tedious and lengthy

computations, that ∆(p, ω) has the sign opposite to det
Dz̄

Dp̄
(p, ω) for any regular

equilibrium (p, ω) ∈ E, which would prove the Lemma.
The following short proof avoids any computation by exploiting the connect-

edness of the curve B(r) through its parameterization by consumer 1’s utility
level u1 ∈ [u1(0), u1(r)]. Let b(u1) = (p(u1), w1(u1), w2(u1)) be the point of the
curve B(r) parameterized by u1. It comes M(u1) = b(u1). Define ω1(u1) =

f1(p(u1), w1(u1)) and ω2(u1) = f2(p(u1), w2(u1)) and ω(u1) = (ω1(u1), ω2(u1)).
Walras law for individual demands imply w1(u1) = p(u1)·ω1(u1) and w2 = p·ω2(u1).
The pair (p(u1), ω(u1)) is therefore an equilibrium and, actually, a no-trade equilib-
rium since ωi(u1) = fi(p(u1), p(u1)·ωi(u1)) for i = 1, 2. In addition, this equilibrium
is regular since every no-trade equilibrium is regular by [1] or [5], Proposition 8.2.

The budget hyperplane A(ω(u1)) depends continuously on u1. Therefore, the
function u1 → δ(u1) = ∆(p(u1), ω(u1)) is also continuous.

The function δ(u1) is different from 0 for all u1 ∈ [u1(0), u1(r)] since every no-
trade equilibrium is regular. Therefore, it suffices to check the sign of this function
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Figure 2: Orientation of A(ω) and B(r) at b

for any particular value of u1. A good candidate is u1 = u1(0). Then, ω(u1) = (0, r)

and the vector ej(ω(u1)) is equal to (πj , 0) for 1 ≤ j ≤ `− 1. The point M0 is in
the horizontal hyperplane A(0, r), a hyperplane with equation w1 = 0 in the (p̄, w1)

coordinate system. Furthermore, the tangent vector t(u1) to the curve B(r) at
u1 = u1(0) necessarily points upwards. This implies that the `-th coordinate of
the vector t(u1) is ≥ 0 for u1 = u1(0) and cannot be equal to 0 because of the
transversality property. This proves the strict inequality δ(u1(0)) > 0.

Figure 2 shows an example of a negative index number at the intersection point
b of A(ω) and B(r) for ` = 3 goods.

Remark 3. Lemma 1 can be reformulated as saying that the index number of the
regular equilibrium (p, ω) ∈ E is the same thing as the intersection number in the
sense of [9], page 96 at the intersection b = (p, p ·ω1, p ·ω2) (a point also denoted
by M(u1) in the earlier sections) of the submanifolds A(ω) and B(r).

Remark 4. If the endowment vector ω ∈ Ω is regular (i.e., all equilibria (p, ω) ∈ E
associated with ω are regular), there is only a finite number of equilibria [7]. It
has been shown by Dierker that the sum of the indices over all these equilibria
is an invariant equal to +1 [8]. This number is the same thing as the oriented
intersection number of the submanifold B(r) and A(ω) as defined in [9], page 107.

It follows from the value equal to +1 of the oriented intersection number that
the number of equilibria of a regular economy is odd. With this number equal to
2n + 1, n + 1 equilibria have an index equal to +1 and n have an index equal to
−1.
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4. Application to the transfer problem

The key issue is the relation between the transfer problem and the intersection
number of A(ω) and B(r) at their intersection point b corresponding to the regular
equilibrium (p, ω) ∈ E.

4.1. Giving away resources and budget hyperplanes

Giving away resources translates very nicely in terms of budget hyperplanes. By
definition, the hyperplane A(ω′) lies below the hyperplane A(ω) if the strict in-
equality p · ω′1 < p · ω1 is satisfied for any p ∈ S. Note that the positions of A(ω)

and A(ω′) relative to each other are described only above the price set S. It then
comes:

Lemma 2. The hyperplane A(ω′) lies below the hyperplane A(ω) if and only if
ω′1 � ω1.

Proof. The condition is equivalent to p · (ω′1−ω1) < 0 for any p ∈ S. This readily
implies that all coordinates of ω′1 − ω1 are ≤ 0 and one of them at least is strictly
negative.

4.2. The equilibrium selection map: geometric version

The concept of regular equilibrium is easily reformulated within the geometric setup.
The equilibrium (p, ω) ∈ E is regular if the curve B(r) and the hyperplane A(ω)

intersects transversally at the point b = (p, w1, w2) where w1 = p · ω1 and w2 =

p ·ω2. Let u1 be consumer 1’s utility level such that M(u1) = b. The vector t(u1)
is tangent to the curve B(r) at the point b and, therefore, is not contained in the
hyperplane A(ω) because of transversality.

Given some sufficiently small neighborhood of b, transversality at b implies that
the intersection B(r) ∩ A(ω′) has a unique point b′ in that neighborhood for ω′

sufficiently close to ω. For ω′ in that neighborhood, this construction defines a
map ω′ → b′ = b(ω′). In addition, it comes b(ω) = b. The composition of that
map with the projection b′ = (p′, w ′1, w

′
2)→ p′ ∈ S is the (local) equilibrium price

selection map of Section 2.5.

4.3. Index value of a regular equilibrium with a transfer problem

Theorem. The regular equilibrium (p, ω) ∈ E features a transfer problem if and
only if its index is equal to −1.

Proof. Let b(ω) = (p, p · ω1, p · ω2) ∈ B(r) ∩ B(ω). Let u1 = u1(f1(p, p · ω1)).
With the notation of earlier sections, it comes b(ω) = M(u1). The arc ˇ�M(u1)M1

(resp. ˇ�M0M(u1)) out of the curve B(r) consists of the points of B(r) that are
parameterized by utility levels ≥ u1 (resp. ≤ u1).
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b(ω′)

Figure 3: Orientation at the intersection and the transfer problem

If the intersection number of B(r) and A(ω) at b(ω) is equal to −1, there is
a neighborhood V ⊂ H(r) of the point b(ω) = M(u1) such that the points of the
intersection ˇ�M(u1)M1 ∩ V are below the hyperplane A(ω). Similarly, the points of
the intersection ˇ�M0M(u1) ∩ V are above A(ω).

Let the open neighborhood U be the domain of the local equilibrium price
selection map s : U → S of Section 2.5 defined by the regular equilibrium (p, ω) ∈
E. For ω′ ∈ U and ω′ � ω, the hyperplane A(ω′) is below A(ω). The point
b(ω′) is therefore below the hyperplane A(ω) and, therefore, belongs to the pathˇ�M(u1)M1. Consumer 1’s utility u1(f1(s(ω′), s(ω′) · ω′1) is therefore strictly higher
than u1 = u1(f1(s(ω), s(ω) · ω1).

The same line of reasoning shows that if the intersection number of B(r) and
A(ω) at b(ω) is equal to +1, then the strict inequality

u1(f1(s(ω′), s(ω′) · ω′1) < u1(f1(s(ω), s(ω) · ω1)

is satisfied for any ω′ ∈ U with ω′1 � ω1.

The theorem proves the importance of the sets of regular equilibria with an
index value equal to +1 and −1 respectively. Those sets partition the set of
regular equilibria into pathconnected components. It is shown in [6] that the set
of equilibria with an index value equal to +1 is pathconnected and contains the
set of no-trade equilibria. This implies that the transfer problem can exist only for
sufficiently large volumes of trade.
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5. Concluding comments

By transferring resources from one country to another, the goal is generally to make
the receiving country better off. It follows from the theorem of this paper that
quirks in the market mechanism render that goal impossible to achieve at equilibria
with an index number equal to −1. Samuelson’s intuition was that the causes
for this misbehavior of competitive markets were somehow related with those that
create instability. This intuition is correct since an equilibrium with index number
−1 is unstable. Having an index value equal to +1 does not imply stability, but at
those equilibria, the behavior of competitive markets does not interfere with the
goal of the donor to make the receiver better off. This makes the concept of index
value equal to +1 a possible substitute to the concept of stability. This is obviously
true for the case of two consumers. The general case of an arbitrary number of
consumers justifies further research.

From the perspective of comparative statics, it is noteworthy that the set of
regular equilibria with an index value equal to +1 is a pathconnected subset of the
equilibrium manifold, a subset that also constrains the subset of no-trade equilibria.
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